

OR

a	Find tw	o regress	sion equat	tions from	n the foll	lowing dat	ta:		
	Χ	10	25	34	42	37	35	36	45
	Y	56	64	63	58	73	75	82	77
b	From th	e follow	ing regres	ssion eau	ations. c	alculate \bar{X}	\overline{X} , \overline{Y} and r	20X-9Y	<i>′</i> =107.
	4X-5Y=				, -		,	_ • , -	,
					UNIT-	IV			
a	Find the	e root of	the equation	ion xe ^x		g false pos	sition meth	nod.	
b	C	7 f 2 1	, ·		• 1 1 1	41 10	1 1		
	Comput	$e \int_{3} x \log x$	<i>xax</i> using	g trapezo	ndal rule	with 10 su	10 01115101	ns.	
		5			OR				
a	Using N	lewton's	forward	interpola	tion forn	nula and t	he given ta	able of v	values
			.1	1.3	1.5	1.7	1.9	٦	
).69	1.25	1.7	2.61	_	
			.21	5.07	1.23	1.07	2.01]	
			e of f(x) v						
b	Evoluot	$\int_{1}^{1} 1$	du Haina	Sime	, ³	and some	ana tha nac		n actual value.
	Evaluat	$\int_{0}^{\infty} \frac{1}{1+x^{2}}$	ux Using	Simpson	$\frac{1}{8}$	and comp	are the res	suit with	i actual value.
					UNIT	-V			
a	Tabulat	e y (0.1)	, y (0.2), a	and y (0.	3) using '	Taylor's s	eries meth	nod, giv	en
	$y^1 = y^2$	+x and	y(0) = 1.						
b	• •				atisfving	$\nabla^2 u = 0 a$	t the piv	otal po	ints given the
			as follow		···		····· ···	F	8
			1000	1000	100		1000		
			2000		1 · · ·	<i>u</i> ₂	500		
			2000		¹ 3	<u>u</u> ₄	o		
			1000	500) o		o		
					OR				_

- 11 a Using R-K method of 4th order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$, y(0)=1 find y(0.2). 5M
 - **b** Using Euler's method, find an approximate value of y corresponding to x = 1 given 5M that $\frac{dy}{dx} = x + y$ and y = 1 when x = 0.

END